Properties of Conjugate, Modulus and Argument of Complex Numbers

IMPORTANT

Properties of Conjugate, Modulus and Argument of Complex Numbers: Overview

This topic covers concepts such as Modulus of Sum of Two Complex Numbers, Argument of Sum of Two Complex Numbers, Modulus of Difference of Two Complex Numbers, Argument of Difference of Two Complex Numbers, etc.

Important Questions on Properties of Conjugate, Modulus and Argument of Complex Numbers

EASY
IMPORTANT

The value of ampiω+ampiω2, where i=-1 and ω=13= non-real is

HARD
IMPORTANT

If z-4+3i1 and α and β are the least and greatest value of z and k be the least value of  x4+x2+4x on the interval 0,, then k is equal to -

EASY
IMPORTANT

Find the modulus of conjugate of given complex number.

z=3+2i

EASY
IMPORTANT

Find the modulus of conjugate of given complex number.

z=-2+3i

EASY
IMPORTANT

Find the modulus of conjugate of given complex number.

z=-2-3i

EASY
IMPORTANT

Find the modulus of conjugate of given complex number.

z=2-3i

EASY
IMPORTANT

Find the modulus of conjugate of given complex number.

z=2+3i

MEDIUM
IMPORTANT

If 3+isinθ4-icosθ,θ0,2π, is a real number, then an argument of sinθ+icosθ is

EASY
IMPORTANT

Statement I  Both z1 and z2 are purely real , if  arg (z1 z2) = 2π  (z1 and z2 have principle arguments).
Statement II Principle arguments of complex number lies between (-π, π).

EASY
IMPORTANT

If z1, z2, z3 represent the vertices of an equilateral triangle such that |z1|=|z2|=|z3|, then

HARD
IMPORTANT

Let z1=10+6 i, z2=4+6 i. If z is any complex number such that, argzz1zz2=π4, then prove that |z79 i|=32.

MEDIUM
IMPORTANT

w=z+1z-1 where z is a complex number. If z lies on the circle |z-i|=2 show that w lies on a circle in the complex plane.